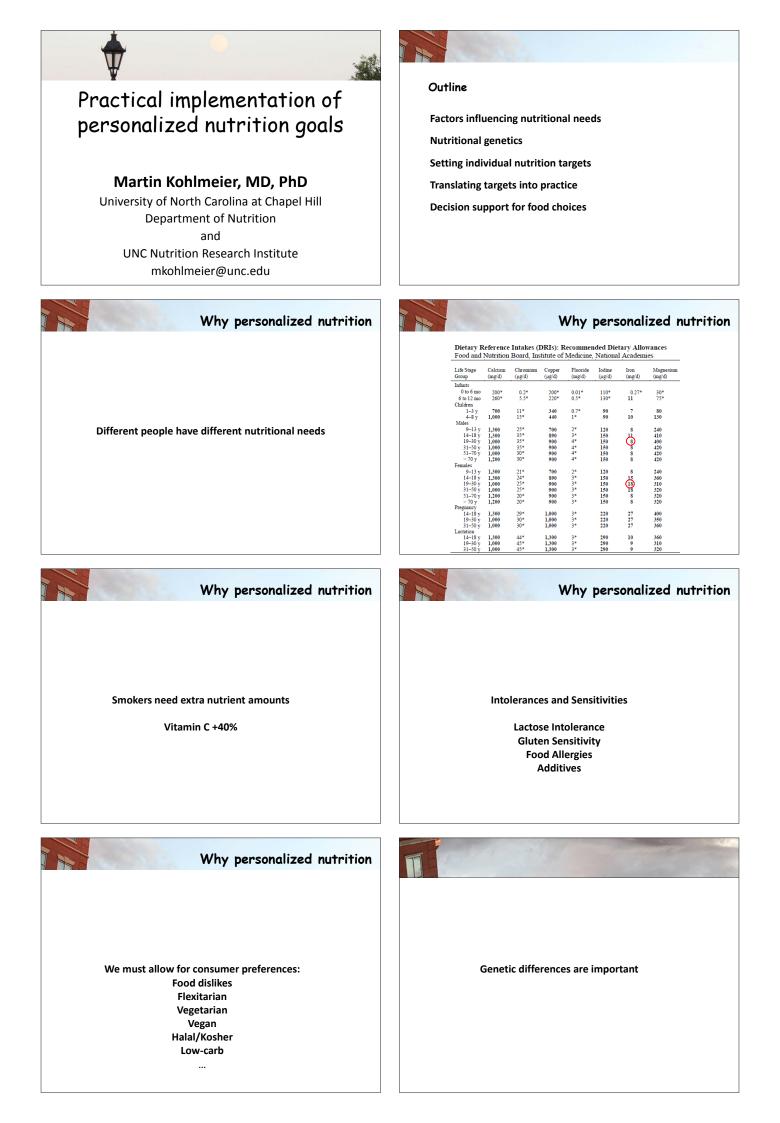
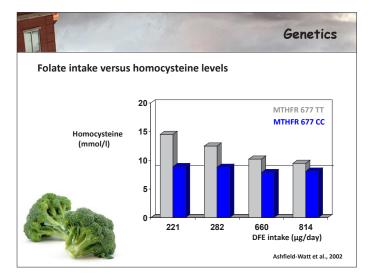
Practical implementation of personalized nutrition goals

We all have our own nutritional needs because we are different in so many ways. Gender, age, body size, physical activity, genomic variation, gut microbiome and other factors determine how much of each of the more than forty essential nutrients we need, what other food ingredients work for us, and whether we will develop food intolerances or allergies.

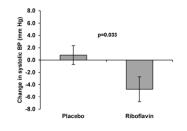
The advent of affordable large-scale genotyping, in particular, provides opportunities to predict the likely response of individuals to specific nutrition exposures. For example, two copies of a common variant in the MTHFR gene increases average folate requirements, and a variant in APOA2 makes saturated fat obesogenic in most homozygous carriers. There is an increasing number of such interactions that are firmly established and need to inform daily practice.

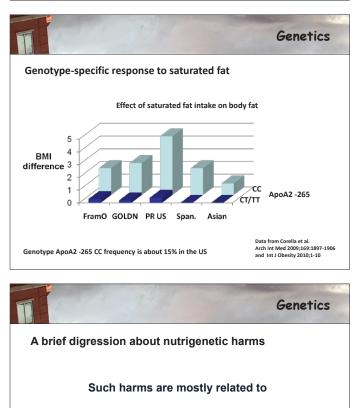

The greatest challenge for current nutrition practice is to translate the wealth of pertinent knowledge into actionable information. First, we need to estimate individual targets for all the different relevant nutrients, food types and behaviors. Whether this is done in the head, on a piece of paper, or by a computer, a large number of specific rules need to be applied to come up with discrete numbers and acceptable ranges for each target. The second step is even harder because it requires to come up with a good number of specific food combinations that meet all the important targets. Each food in these combinations also must be free of unwanted components, such as gluten, lactose, specific allergens, or just individually disliked foods, such as meats in general, pork specifically, or maybe spinach. Until now, meal plans have not been fully tailored to individual needs because it could not be done.


An innovative online platform now provides the much needed decision support for individual food choices. A rules engine first calculates targets, acceptable ranges and weighting factors for intake of total energy, nutrients of interest and food groups. The user can authorize temporary access to the personal genetic data just for the calculations without storing this sensitive information. All rules are listed to maintain full transparency. The calculated parameters are then used by a search engine to find meal plans that fit individual needs. The search takes into account individual food sensitivities and preferences. The system offers matching combinations, which the user can modify further within the constraints of individual needs and preferences.

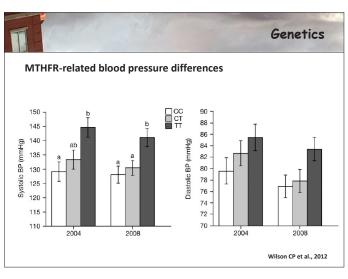
Prof. Martin Kohlmeier, University of North Carolina

Martin Kohlmeier, currently professor of nutrition at the University of North Carolina at Chapel Hill, heads Nutrition in Medicine, and the Nutrigenetics Laboratory at the UNC Nutrition Research Institute. He investigates inherited variation as a modulator of nutrient disposition and develops online tools for genotype-specific nutrition guidance.

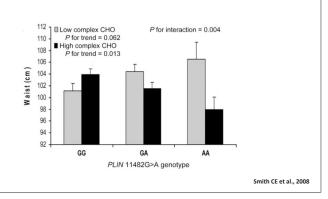

He completed medical school and received a medical doctorate on computational biochemistry from Heidelberg University, Germany. He received postdoctoral training in biochemistry and bioinformatics at the Max-Planck-Institute for Nutrition, Dortmund, Germany, and was awarded an advanced doctorate (Dr.med.habil.) in clinical biochemistry from the Freie Universität, Berlin. A significant part of his professional training concerned the molecular analysis and clinical treatment of people with inherited metabolic diseases.



Lowering BP with 1.6 mg riboflavin/day for 16-weeks


RCT in Ireland of treated hypertensive adults with MTHFR TT, achieving an average reduction of systolic BP by 5.6 mm Hg

Wilson CP et al., 2013



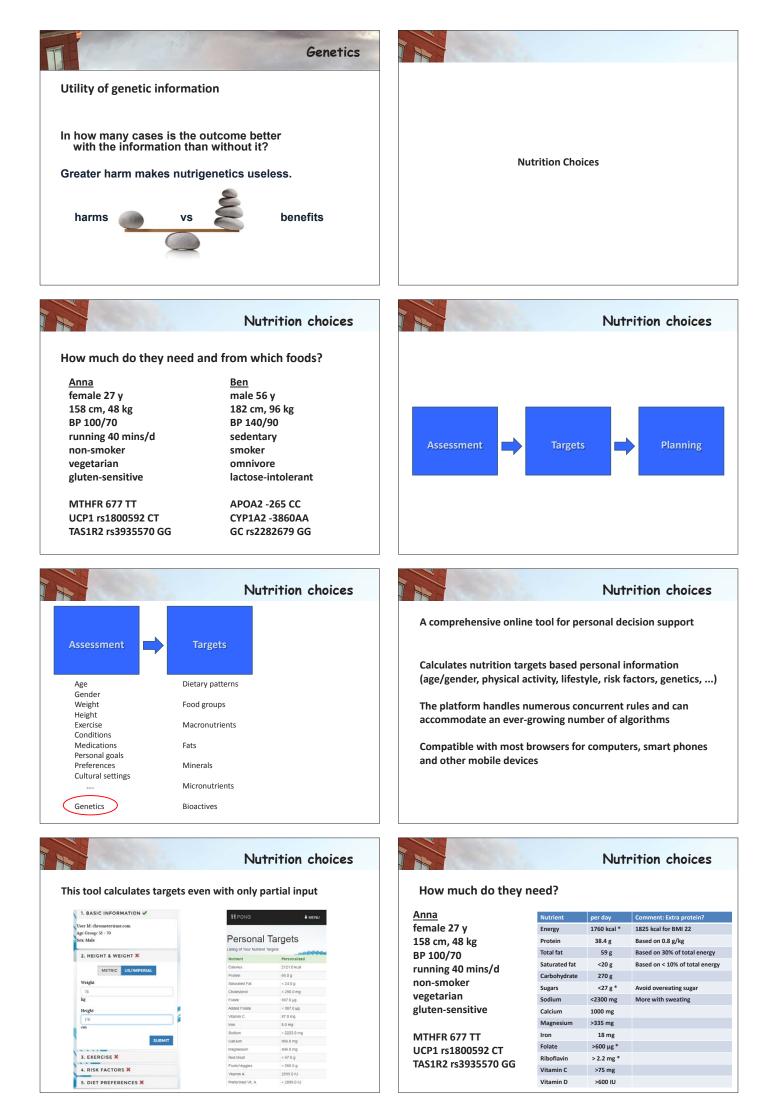
- · Expenditures and opportunity costs
- Misguided use of risky therapies
- Psychological and social burdens
- Insurance and employment risks

Genotype-specific response to carbohydrate

Genetics

				Genetics
Some gen	es for tailoriı	ng nutrition ta	argets	
IL6	ALOX5	AMY1	NAT1	TFAP2B
UCP1	COX2	GFOD2	NAT2	TNFA
UCP3	CETP	IRS1	GSTM1	LCT
FTO	FADS1	SIRT1	GSTP1	CA6
APOA2	FADS2	ESR2	UGT1A1	TAS1R1
PLIN	APOE	AGT	XPC	TAS1R2
CLOCK	ABCG5	ADD1	MGMT	TAS1R3
MC4R	ABCG8	GRK4	PON1	TAS2R3
PPARG	PNPLA3	SLC4A5	XRCC1	TAS2R4
ADRB2	DHCR7	DRD2	MPO	TAS2R5
ADRB3	GC	TMPRSS6	MTP	TAS2R19
FABP2	VDR	SLC40A1	MnSOD	TAS2R20
ADH1B	ALPL	HFE	GATA3	TAS2R38
ALDH2	FUT2	HAMP	OCT	TAS2R50
CYP1A2	TCN2	TRPM7	CASR	TAS2R60
ADORA2A	HP	CUBN	PAPOLG	OR2M7
MTHFR	CYP4F2	SLC23A1	CFTR	OR10A2
DHFR	F2	SLC23A2	TCF7L2	CD36
MTHFD1	F5	PLA2G4A	SCARB1	FGF21
PEMT	BCM01	SEPP1	SLC30A3	HTR2A

Utility of genetic information


In how many cases is the outcome better with the information than without it?

Low harm levels leave room for net benefits.

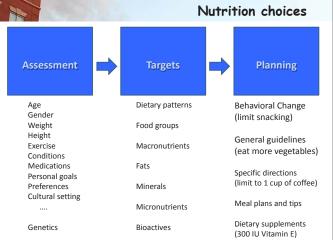
Genetics

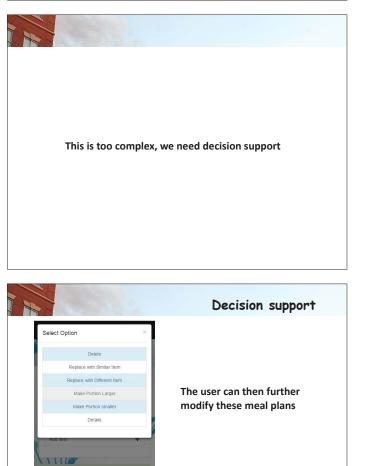
Nutrition choices

How much do they need?


Ben	Nutrient	per day	Comment: Caffeine<200 mg
male 56 y	Energy	2638 kcal	Start exercising
182 cm, 96 kg	Protein	76.8 g	Based on 0.8 g/kg
BP 140/90	Total fat	88 g	Based on 30% of total energy
sedentary	Saturated fat	<13 g *	
smoker	Carbohydrate	385 g	
	Sugars	<39 g	
omnivore	Sodium	<1600 mg	Carefully avoid getting more
lactose-intolerant	Calcium	1000 mg	
	Magnesium	>420 mg	
APOA2 -265 CC	Iron	8 mg	
CYP1A2 -3860AA	Folate	>400 µg	
GC rs2282679 GG	Riboflavin	> 1.3 mg	
GC 152262079 GG	Vitamin C	>126 mg	
	Vitamin D	>900 IU *	

Nutrition choices


This is the difficult part: making food choices


Image: Clerk Provide the structure of the str

-			
		Nutri	tion choi
ina and	Ben what t	o do based on their tar	gets
trient	per day	Nutrient	per day
	1760 kcal	Energy	2638 kcal
tein	38.4 g	Protein	76.8 g
otal fat	59 g	Total fat	88 g
ated fat	<20 g	Saturated fat	<13 g
ohydrate	264 g	Carbohydrate	396 g
ars	<26 g	Sugars	<40 g
lium	<2300 mg	Sodium	<1600 mg
ım	1000 mg	Calcium	1000 mg
agnesium	>335 mg	Magnesium	>420 mg
n	18 mg	Iron	8 mg
olate	>600 µg	Folate	>400 µg
ooflavin	> 2.2 mg	Riboflavin	> 1.3 mg
amin C	>75 mg	Vitamin C	>126 mg
tamin D	>600 IU	Vitamin D	>900 IU
etarian	Gluten-free	Caffeine <200mg	Low lactose

			Decision support
Nutritional Info	for 3 Meals	×	
Nutrient	Actual	Target	
Calories	2095.0 kcal	2121.0 kcal	
rotein	75.5 g	68.0 g	
aturated Fat	14.2 g	< 24.0 g	Displays comprehensive
cholesterol	78.0 mg	< 290.0 mg	nutrient information
olate	378.0 µg	387.0 µg	
dded Folate	208.0 µg	< 387.0 µg	
ritamin C	120.0 mg	87.0 mg	
ron	18.1 mg	8.0 mg	
Sodium	1956.0 mg	< 2223.0 mg	
Calcium	1037.0 mg	966.0 mg	
Aagnesium	399.0 mg	406.0 mg	
Red Meat	85.0 g	< 97.0 g	
ruits/Veggies	665.0 g	> 580.0 g	
/itamin A	2699.0 IU	2899.0 IU	
reformed Vit. A	513.0 IU	< 2899.0 IU	
Beta-Carotene	2183.0 IU	> 1691.0 IU	

Decision support

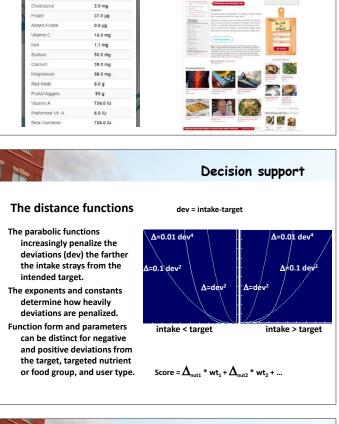
Calculating goodness-of-fit for meal plans

- Determine how much each criterion of a daily meal plan deviates from the intended targets.
- Use the individually appropriate distance functions to determine the point value Δ for each deviation.
- Apply nutrient-/food-specific weights to the point values for each target.
- Add up all weighted point values to get a single score reflecting the goodness-of-fit of the meal plan.
- The lower the score, the better the fit.

Our daily food choices strongly impact overall

nutrient amounts for different people

Current guidelines already recommend very different


The evidence for genotype-specific nutrition needs

The complexity of navigating dietary needs has become so great that we need practical decision support tools

already implicates dozens of genetic variants

Conclusions

wellbeing and survival

Decision support

-

-

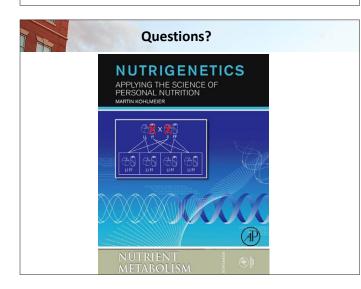
DIE NEW 2016 BAVA

my.

Nutritional Information

Protein

46.0 kca


2.5 g

0.8 g

Thanks to all my collaborators!

Kelly Adams, MPH, RD Margo Powell, MS Evan Morris Olivia Dong, MPH, RD Emily Busey, MPH, RD Rebecca Rudel, MPH, RD Jenna Sedberry

